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Abstract
We present the perturbative Yangian symmetry at next-to-leading order in
the su(2|1) sector of planar N = 4 SYM. Just like the ordinary symmetry
generators, the bi-local Yangian charges receive corrections acting on several
neighbouring sites. We confirm that the bi-local Yangian charges satisfy the
necessary conditions: they transform in the adjoint of su(2|1), they commute
with the dilatation generator and they satisfy the Serre relations. This proves
that the sector is integrable at two loops.

PACS numbers: 11.25.Tq, 11.15.−q, 11.30.Pb, 02.30.Ik

1. Introduction

The dilatation generator of planar N = 4 SYM is integrable at one loop [1], and all field theory
calculations done so far are consistent with integrability persisting at least through three loops
[2]. Assuming integrability, an asymptotic set of all-loop Bethe equations have been found
[3]. Moreover, the dual non-interacting string theory on AdS5 × S5 is integrable classically
[4], and up to a scalar factor, the same Bethe equations give the string quantum spectrum [5],
at least up to one loop [6]. In fact, supersymmetry fixes the string and gauge Bethe equations
uniquely, up to a scalar factor [7]. Recent developments on the scalar factor and crossing
symmetry [8] include [9].

Undoubtedly, the Bethe equations are the most efficient way to obtain the spectrum of the
string and gauge theories. However, they depend on the assumption of integrability. Since
there is no obvious definition of the R-matrix for this system, perhaps the only way to prove
integrability is to construct the Yangian symmetry. The string theory’s classical Yangian
charges were introduced in [4], and [10] argues that an infinite family of non-local charges
persists quantum mechanically. For the gauge theory, the Yangian charges are known at
leading order for the full theory [11, 12]. For the su(2) sector, they are known up to second
[13] and fourth order [14], and [15] gave the next-to-leading order Yangian symmetry of
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the su(1|1) sector. By considering the su(2|1) sector at next-to-leading order, we encounter
important features that have not appeared in these previous studies of the gauge theory Yangian.
The Hamiltonian (dilatation generator) is part of the local symmetry algebra, and other local
symmetry generators have two-site interactions.

At leading order, the infinite tower of Yangian charges is generated by repeated
commutators of the bi-local generators:

YA =
∑
i<j

f A
CBJB(i)JC(j), (1.1)

where the JA are local symmetry generators and f A
BC are the structure constants. Here we

have introduced the notation J(i) to represent the generator acting on site i of the spin chain.
We propose that the O(gn) perturbative corrections to YA, which we write as YA

n , are of
the schematic form

YA
n =

∑
p+q=n
i�j

f A
CBJB

p (i)JC
q (j) + local terms. (1.2)

The � symbol in the summation excludes terms for which the two (generically multi-site)
symmetry generators act on common sites, which are instead included in the local terms. Via
explicit computation, we confirm that there are Yangian charges of this form for the su(2|1)

sector at next-to-leading order. Furthermore, in this case the local terms can be expressed
simply as sums over products of two overlapping local symmetry generators.

As is well known, for typical integrable systems the Yangian charges only commute with
the spin-chain Hamiltonian on infinite-length chains. The reason is that it is not possible
to consistently define periodic boundary conditions for the Yangian charges. At next-to-
leading order, we find that an infinite chain is required for the Yangian charges to transform
properly under local symmetry transformations, to satisfy the Serre relations, and to commute
at next-to-leading order (two loops) with the Hamiltonian1.

In typical integrable systems, the existence of Yangian charges follows from a nearest-
neighbour R-matrix satisfying the Yang–Baxter equation, which also generates an infinite
family of local commuting charges. However, it is unclear if it is possible to apply the R-matrix
formalism to this system beyond leading order. Therefore, it is reasonable to use the existence
of Yangian symmetry as a substitute definition of integrability, and the results of this paper
prove that the su(2|1) sector is integrable at two loops.

In section 2 we review the su(2|1) algebra and its Yangian generalization, and in
section 3 we review the leading order representation. The next-to-leading order corrected
Yangian charges and the proofs that they satisfy the Yangian algebra and commute with the
Hamiltonian are given in section 4. We conclude and give possible directions for future
research in section 5.

2. The algebra

2.1. The su(2|1) algebra

According to our convention, the eight symmetry generators of the su(2|1) algebra, JA,A =
1, . . . , 8, split as follows. The supersymmetry generators have indices between 1 and 4, the
bosonic su(2) generators have indices between 5 and 7, and J8 is a linear combination of the
dilatation generator and the length generator. These generators are simple linear combinations

1 Note that the leading order Hamiltonian is O(g2) or one-loop, so that showing it has nth order Yangian symmetry
proves (n + 1)-loop integrability.
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of those used in [16], where the supersymmetry generators are Qa and Sa , and the bosonic
generators are Ra

b and D (a, b = 1, 2). We give these linear combinations in the appendix.
The algebra is

[JA, JB} = f ABCgCDJD = f AB
DJD, (2.1)

where g is the Cartan–Killing form or metric for the su(2|1) algebra. The structure constants
f ABC are totally antisymmetric, with extra minus signs for every interchange of fermionic
indices. Similarly, the metric is symmetric, up to an extra minus sign for switching fermionic
indices. Therefore, we must be careful about the order of the indices of the (inverse) metric
when (raising) lowering indices. In our convention, the first index of the (inverse) metric is
summed over, as in (2.1).

We also have the symmetric invariant tensor, defined by

dABC = sTr
{
JA

0 , JB
0

]
JC

0 . (2.2)

For this definition, all the generators act on the same site, and the mixed brackets with the
curly bracket first means that we use the anti-commutator for commuting generators and vice
versa.

We give the non-vanishing components of the metric, structure constants, and symmetric
invariant tensors in the appendix.

2.2. The su(2|1) Yangian algebra

The su(2|1) Yangian algebra is an infinite-dimensional algebra generated by JA and YA.
Commutators of these generators yield an infinite sequence of generators, YA

(i), (i = 0,

1, 2, . . .). i = 0, 1 correspond to JA and YA. The algebra is defined by the following
commutation relations:

[JA, JB} = f AB
CJC, (2.3)

[JA,YB} = f AB
CYC, (2.4)

f [BC
E[YA},YE} = h2(−1)(EM)f AK

Df B
E

Lf C
F

MfKLM{JD, JE, JF }. (2.5)

The notation {JD, JE, JF } denotes the totally symmetric product (with extra minus signs
for every interchange of fermionic generators). (−1)(EM) gives −1 when both indices are
fermionic, and 1 otherwise. Our conventions lead to h2 = − 64

3 . The mixed brackets around
the raised indices on the left side of the last equation mean that it is summed anti-symmetrically
over all permutations of A,B and C. We obtained (2.5) (the Serre relation) by substituting
(2.4) into the standard form for this Serre relation. Usually this would have no effect, but in
our case this simplifies the proof of that the Serre relation is satisfied. There is another Serre
relation that Yangian algebras must satisfy. However, this relation follows from those given
above unless (2.5) is trivial [17], and (2.5) is non-trivial for su(2|1).

3. The leading order representation

3.1. The su(2|1) algebra

For vanishing Yang–Mills coupling constant g, the su(2|1) generators act as the tensor product
of single-site generators. The non-vanishing actions on a single site are

(Qa)0|φb〉 = δb
a |ψ〉, Ra

b|φc〉 = δc
b|φa〉 − 1

2δa
b |φc〉,

(Sa)0|ψ〉 = |φa〉, D0|φa〉 = |φa〉,
D0|ψ〉 = 3

2 |ψ〉.
(3.1)
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We have neglected the subscript 0 for Ra
b , since the compact R symmetry receives no quantum

corrections.
The leading term of δD, which is O(g2), acts on adjacent sites of the spin chain as2 [18]

δD2 = 1 − Π, (3.2)

where 1 is the identity operator, and Π is the graded permutation operator. δD2 also equals
the quadratic Casimir operator:

δD2 = gabJ
a(1)Jb(2). (3.3)

For larger sectors (where the Casimir has more than two distinct eigenvalues on two-site
chains), this simple relation between the Hamiltonian and the quadratic Casimir is replaced
by a relation involving the digamma function [1, 19].

3.2. The su(2|1) Yangian algebra

The local symmetry generators JA
0 are given by the previous section and (A.1). The Yangian

generators YA
0 then act as

YA
0 = f A

CB

∑
i<j

JB
0 (i)JC

0 (j). (3.4)

The adjoint transformation rule (2.4) is satisfied because of the Jacobi identity. The Serre
relation follows from a straightforward generalization of the proof given for su(n) Yangians
in [12].

To show that the YA
0 commute with the one-loop dilatation generator, one can modify the

arguments used in [11] for the full psu(2, 2|4) spin chain, or check by explicit computation
that on a chain of length 2,[

δD2,Y
A
0

] = JA
0 (1) − JA

0 (2). (3.5)

Since δD2 commutes with the JA, the commutator evaluated on longer chains is just the sum
of this adjacent two-site commutator over the length of the chain. However, this yields a total
chain derivative which vanishes on an infinite chain.

4. The next-to-leading order corrections

4.1. The su(2|1) algebra

The one-loop correction to the supersymmetry generators are two-site operators. The non-
vanishing actions are [16, 20]

(Qa)2|φbφc〉 = 1
4δb

a(|ψφc〉 − |φcψ〉) + 1
4δc

a(|φbψ〉 − |ψφb〉),
(Qa)2|φbψ〉 = 1

4δb
a |ψψ〉,

(Qa)2|ψφb〉 = − 1
4δb

a |ψψ〉,
(Sa)2|ψφc〉 = 1

4 (|φaφc〉 − |φcφa〉,
(Sa)2|φcψ〉 = 1

4 (|φcφa〉 − |φaφc〉),
(Sa)2|ψψ〉 = 1

4 (|φaψ〉 − |ψφa〉).

(4.1)

2 For simplicity, we will write the action of generators on states of minimal length. The action on longer states is
just given by the homogeneous sum over the length of the chain.
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We can generalize the quadratic product for the one-loop dilatation generator to a compact
expression for all of the one-loop generators,

JA
2 = 1

8 (dBC
A − dA

BC)JB
0 (1)JC

0 (2) + 1
8 ((−1)(AA) − 1)

(
JA

0 (1)J8
0(2) + J8

0(1)JA
0 (2)

)
+ 1

2gA8gBCJB
0 (1)JC

0 (2). (4.2)

Importantly, note that this expression is basis dependent. Also, the first line vanishes for all
of the bosonic generators, and the second line gives the dilatation generator.

At two loops, the dilatation generator already has a lengthy expression. We use the
expression in [16] for the two-loop Hamiltonian of the su(2|3) sector, which can be applied
directly here by letting the Latin indices represent two types of bosons and Greek indices
represent the fermion. Again, there is also a more compact expression,

δD4 = (
1
8dCBA − 1

8 (−1)ABdBCA

)
JA

0 (1)JB
0 (2)JC

0 (3)

+ 1
8 (gAB − gBA)

(
J8

0(1)JA
0 (2)JB

0 (3) + JA
0 (1)JB

0 (2)J8
0(3)

)
− 1

2J8
0(2)δD2(1, 3) + δD2(1, 3) − 2δD2. (4.3)

As above, this expression is basis dependent. The expression in [16] is more general, as it
includes possible similarity transformations and chain derivatives, but they have no effect on
the spectrum.

4.2. The su(2|1) Yangian algebra

We find that the next-to-leading order corrections to the Yangian generators can still be written
in terms of the JA.

YA
2 = YA

2 non-local + YA
2 local, (4.4)

YA
2non-local = f A

CB


 ∑

i<j−1

JB
2 (i, i + 1)JC

0 (j) +
∑
i<j

JB
0 (i)JC

2 (j, j + 1)


 , (4.5)

YA
2 local =

∑
i

f A
CBJB

2 (i, i + 1)
(
JC

0 (i + 1) − JC
0 (i)

)
+

∑
i

f A
CB

(
JB

0 (i) − JB
0 (i + 1)

)
JC

2 (i, i + 1)

+
∑

i

(
αYA

0 (i, i + 1) + γ

8∑
B=1

(gBA − gAB)
(
JB

0 (i) − JB
0 (i + 1)

))
. (4.6)

It is interesting to note that if the minus signs in the first two lines of (4.6) were replaced by
plus signs, it would just be JA

2 acting on the entire chain. Also, for A = 8 the first two lines of
(4.6) vanish. Note that the term proportional to γ vanishes on infinite chains since it is a chain
derivative. We include it because the choice γ = 1 simplifies the proof that the Serre relation
is satisfied. However, when checking commutators of the YA with the JB we set γ = 0, since
commutators of chain derivatives and local generators are chain derivatives. For vanishing α

and γ , (4.6) is the sum over the chain of the two-site interaction

YA
2 local = (

2fBC
A + 3f A

CB + 3fCB
A
)
JB

0 (1)JC
0 (2)

+
1

2

8∑
B=1

(gBA − gAB)
(
JB

0 (1)J8
0(2) − J8

0(1)JB
0 (2)

) − gA
8Y

8
0(1, 2). (4.7)
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Again, this is a basis-dependent expression. We have verified that the Yangian su(2) generators
restricted to the su(2) subsector agree with the expression found in [13] for α = 1

2 . We cannot
check with the su(1|1) Yangian presented in [15] since there the corrections to the Yangian
generators are local, and bi-local corrections are essential when the su(1|1) sector’s Yangian
is embedded in a larger sector’s Yangian.

Similarity transformations. As explained in [16], the local symmetry algebra is preserved
by similarity transformations, which act as

JA �→ eUJA e−U = JA + [U, JA] + · · · , (4.8)

and the Yangian symmetry is preserved also if we apply the same transformation to the YA. In
general, U could be any generator acting on the chain, but we require similarity transformations
to preserve the coupling dependence that arises from Feynman diagrams, the manifest
R-symmetry, and the even parity of the local symmetry generators. As a result, the O(g2)

contributions from U can be linear combination of only five possible two-site interactions. Two
linear combinations of these, the identity and the one-loop dilatation generator, commute with
all of the JA

0 and YA
0 . So there are three non-trivial independent similarity transformations.

One linear combination preserves the form (4.4), while the remaining two are not consistent
with this form. It is intriguing that the elegant expression found for the O(g2) symmetry
generators of the psu(1, 1|2) sector (which contains the su(2|1) sector) in [20] gives the basis
that we have used.

Adjoint transformation. We now verify that the adjoint transformation rule (2.4) is satisfied
at next-to-leading order. First, we just consider the commutator with J8, which beyond leading
order is the anomalous part of the dilatation generator. Since corrections to each of the YA

have the same dimension as at leading order, the vanishing commutator of the leading order
YA with the one-loop dilatation generator implies that at next-to-leading order the Yangian
charges transform properly under commutators with J8 [21].

The same proof as at leading order shows that the term of YB
2 proportional to α transforms

properly with respect to the JA. This term is needed (again with α = 1
2 ) for the commutator

with the dilatation generator at O(g4), but is not necessary for the JA and YA to form a
Yangian algebra at next-to-leading order. Of the remaining terms, those that involve products
of generators far apart transform properly under commutation with the JA, as a straightforward
generalization of the leading order proof would still work. However, we need to check terms
in the commutator that involve one generator that intersects the other two generators. All of
these terms involve only two adjacent sites of the chain, so it will be sufficient to examine
this commutator on a chain with just two sites. Explicitly, we need to check the second of the
following equalities:

[JA,YB}2 local = f B
DC

([
JA

2 (1, 2), JC
0 (1)JD

0 (2)
}

+
[
JA

0 (1) + JA
0 (2), JC

2 (1, 2)
(
JD

0 (2) − JD
0 (1)

)}
+

[
JA

0 (1) + JA
0 (2),

(
JC

0 (1) − JC
0 (2)

)
JD

2 (1, 2)
})

= f AB
CYC

2 local + terms that vanish on an infinite chain. (4.9)

Cancelling terms, we find that this is equivalent to

0 = f B
DC

([
JA

2 (1, 2), JC
0 (1)

}
JD

0 (1) − (−1)ACJC
0 (1)

[
JA

2 (1, 2), JD
0 (1)

}) − parity

− 1
8

[
JA

2 (1, 2),YB
0 (1, 2)

}
+ terms that vanish on an infinite chain. (4.10)
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Here ‘parity’ just means interchange sites 1 and 2. Since JA receives no quantum corrections
for A = 5, 6 or 7, clearly Yangian generators transform properly with respect to these local
symmetry generators. More generally, (4.10) simplifies to

mAB
C

(
JC

0 (1) − JC
0 (2)

)
, (4.11)

where in our basis

mAB
C = 1

8
((−1)AA − 1)

(
8∑

D=1

gDAf BD
C + 2gB8gA

C + 2g8
CgAB

)
− gA8gB

C. (4.12)

Expression (4.11) is just a chain derivative. Therefore, the Yangian charges transform properly
under the local symmetry algebra.

Commutator with the Hamiltonian. We have also verified that the dilatation generator
commutes with this Yangian representation up toO(g4). Again the commutator splits into local
and bi-local parts. The local part includes terms where one of the generators intersects both
of the others, as well as the commutator involving the last term in the expression for YB

2 . The
rest of the commutator is bi-local. The bi-local part vanishes because the dilatation generator
commutes with the JA. The local piece involves three adjacent sites. Using Mathematica, we
have checked this commutator on a chain of three sites:

[δD,YA]4 local = [
δD2,Y

A
2

]
local +

[
δD4,Y

A
0

]
local

= WA(2, 3) − WA(1, 2),

WA(1, 2) = 4dA
CBJB

0 (1)JC
0 (2) + 4JA

0 (1) + 4JA(2) + 8JA
2 (1, 2).

(4.13)

Since the difference of the WA’s is a chain derivative, the YA commute with δD at O(g4).

4.3. The Serre relation

The Serre relation is satisfied up to a new type of term that vanishes on an infinite chain
L = ∞,

f [BC
E[YA},YE}2 = −64

3
(−1)(EM)f AK

Df B
E

Lf C
F

MfKLM{JD, JE, JF }2

+ aABC
DE

(
JD

0 (1)

L∑
i=2

JE
0 (i) + JD

0 (L)

L−1∑
i=1

JE
0 (i)

)
. (4.14)

We have not found simple expressions for the coefficients aABC
DE (we have found their values

in our basis), but this will not be necessary. To show that this last term vanishes on an infinite
chain, we introduce the set of parity-odd two-site operators

YAB(i, j) = JA
0 (i)JB

0 (j) − JA
0 (j)JB

0 (i). (4.15)

It is always possible to find coefficients cABC
DE such that

cABC
DE

[
JA

0 (i),YBC(i, j)
} = JD

0 (i)JE
0 (j). (4.16)

Using this, we write the extra term in (4.14) as∑
i<j

ãABC
DEF

[
JD

0 (1) − JD
0 (L),YEF (i, j)

}
, (4.17)

for some new coefficients ã. The first term in the commutator vanishes on infinite chains.
Therefore, satisfying (4.14) is equivalent to satisfying the Serre relations on infinite chains. It
is simpler to check the Serre relation when the extra term is written as in (4.14).
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We will now prove that (4.14) is satisfied. We have checked this equation on two and
three-site chains, for γ = 1. In fact, this is sufficient to guarantee that this relation holds for
any length chain. Define3

ZABC(1, L) = f [BC
E[YA},YE}2 + 64

3 (−1)(EM)f AK
Df B

E
Lf C

F
MfKLM{JD, JE, JF }2,

(4.18)

evaluated on a chain of length L, which we need to show equals the extra term in (4.14)
for any L. Also, define BABC(1, L) to be the terms of ZABC(1, L) simultaneously including
generators acting on the first site and generators acting on the last site.

The terms entering the Serre relation are local, bi-local, or tri-local. Local terms are those
that would appear on a chain of length 2. The contribution from the cubic J term actually
vanishes on two sites, but the Y commutators yield

ZABC(1, 2) = aABC
DE

(
JD

0 (1)JE
0 (2) + JD

0 (2)JE
0 (1)

)
, (4.19)

which agrees with (4.14) for L = 2.
Bi-local terms first appear for chains of length 3. The bi-local terms from the cubic J

expression are cancelled by commutators of the non-local part of Y2 with a twice-intersecting
Y0 (not including terms where a nearest-neighbour Y0 acts on the same sites as a J2). The
remaining bi-local pieces either include a local Y2 or a J2 intersecting a Y0 on two sites. For
these terms, all that matters is that two sites are adjacent, so that a J2 or Y2 local act on them,
and the location of the third site does not matter. Using this, we can determine the contribution
from the bi-local terms just from a three-site Mathematica computation. For the bi-local part
involving the boundaries of a chain of length 3 we find

BABC(1, 3) = aABC
DE

((
JD

0 (1) − JD
0 (2)

)
JE

0 (3) +
(
JD

0 (3) − JD
0 (2)

)
JE

0 (1)
)
. (4.20)

The remaining terms are tri-local. The tri-local piece gives zero total contribution to the
Z since the J satisfy the su(2|1) algebra exactly without chain derivatives. Therefore, the
bi-local boundary contributions (4.20) for chains of length 3 are the only contributions to
BABC for any chain of length greater than 2,

BABC(1, L) = aABC
DE

((
JD

0 (1) − JD
0 (2)

)
JE

0 (L) +
(
JD

0 (L) − JD
0 (L − 1)

)
JE

0 (1)
)
. (4.21)

Now we can finish the proof using induction. Assume that (4.14) is satisfied for chains of
length L. Then split terms of ZABC(1, L + 1) into those that only act on the first L sites, those
that only act on the last L sites and those that act on both boundaries. However, we also need
to subtract the terms that only act on the intersection of the first and last L sites. Then using
our assumption and substituting (4.21) is sufficient:

Z(1, L + 1) = ZABC(1, L) + ZABC(2, L + 1) − ZABC(2, L) + BABC(1, L + 1)

= aABC
DE

(
JD

0 (1)

L∑
i=2

JE
0 (i) + JD

0 (L)

L−1∑
i=1

JE
0 (i) + JD

0 (2)

L+1∑
i=3

JE
0 (i)

+ JD
0 (L + 1)

L∑
i=2

JE
0 (i) − JD

0 (2)

L∑
i=3

JE
0 (i) − JD

0 (L)

L−1∑
i=2

JE
0 (i)

)

+ BABC(1, L + 1)

= aABC
DE

(
JD

0 (1)

L∑
i=2

JE
0 (i) + JD

0 (2)JE
0 (L + 1) + JD

0 (L)JE
0 (1)

3 Note that ZABC(1, L) acts on all sites between and including sites 1 and L.
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+ JD
0 (L + 1)

L∑
i=2

JE
0 (i)

)
+ BABC(1, L + 1)

= aABC
DE

(
JD

0 (1)

L+1∑
i=2

JE
0 (i) + JD

0 (L + 1)

L∑
i=1

JE
0 (i)

)
, (4.22)

in agreement with (4.14). The Serre relation is satisfied regardless of the value of α (the
coefficient of YA

0 (i, i + 1) in the expression for YA
2 ), but we do not have a simple explanation

for this.

5. Discussion

We have constructed the next-to-leading order corrections to the su(2|1) sector Yangian,
proving integrability at two loops. Furthermore, these corrections are built in a simple way
from the local symmetry generators. Perhaps the most important result is the generalization
of the standard definition of Yangian symmetry to include this system. The local symmetry
generators still transform as usual,

[JA, JB} = f AB
CJC. (5.1)

However, the adjoint transformation rule of the Yangian charges is generalized to allow
for chain derivatives. This had to be the case since at leading order the Hamiltonian only
commutes with the Yangian generators up to chain derivatives, and the Hamiltonian becomes
part of the symmetry algebra starting at next-to-leading order. On a chain of length L the
adjoint transformation rule is

[JA,YB} = f AB
CYC + mAB

C(ĴC(left) − ĴC(right)). (5.2)

The only essential part of the last term is that it is a boundary term. At next-to-leading order
in this sector, ĴA(left) is JA

0 (1) and ĴA(right) is JA
0 (L). At higher orders we expect that the ĴA

will at least involve higher order corrections to the JA acting on the boundary sites and their
immediate neighbours, and in principle they do not even need to be simply related to the JA.
Finally, the Serre relation is generalized to include commutators of boundary terms,

f [BC
E[YA},YE} = h2(−1)(EM)f AK

Df B
E

Lf C
F

MfKLM{JD, JE, JF }
+ ãABC

DEF

[
ĴD

0 (left) − ĴD
0 (right),YEF

}
. (5.3)

Again, the only essential part of the new term is that ĴD
0 (left) − ĴD

0 (right) is a boundary term.
A natural question is on the importance of the su(2|1) algebra for this construction. For

instance, is it possible to repeat this construction for other su(n|m) algebras, with spins in
the fundamental representation? If not, what is special about su(2|1)? Also, it would be
interesting to see how much of the structure we have found for the Yangian charges can be
maintained at higher order in this sector. Are the local pieces of the higher order corrections
still just given by the appropriate choice of signs for the products of overlapping symmetry
generators, combined with multiples of the local pieces of lower-order Yangian charges?

We have laid the foundation for generalizations to the psu(1, 1|2) and su(2|3) sectors.
New features would appear for these sectors, non-compactness for the former and length-
changing generators for the latter. Also, for the su(2|3) sector the local symmetry generators
only commute up to chain derivatives, so in this case we will have to generalize the defining
Yangian algebra equations even further. We anticipate that the adjoint transformation rule will
need to include commutators with boundary terms, and the Serre relation will need to include
commutators with commutators of boundary terms.
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While higher order and larger sector Yangian computations will become impractical very
rapidly, further study may yield new insights that simplify the construction of the Yangian
and deepen our understanding of the integrability of these spin-chain models. Finally, the
constraints imposed by constructing the Yangian algebra should be useful in finding, or even
deriving, loop corrections to the Hamiltonian.
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Appendix. su(2|1) basis

The transformation between the two different bases for the local su(2|1) symmetry generators
is given by

J1 = S1 + Q1, J2 = i(S1 − Q1), J3 = S2 + Q2, J4 = i(S2 − Q2),

J5 = R1
2 + R2

1, J6 = i(R1
2 − R2

1), J7 = R1
1 − R2

2, J8 = 2D0 − L + δD.

(A.1)

L is the length generator, which commutes with all of the other symmetry generators (there
are no length-changing symmetries in this sector).

Up to permutations of the indices, the only non-vanishing structure constants are

f 117 = f 135 = f 227 = f 236 = f 245 = −2,

f 118 = f 146 = f 228 = f 337 = f 338 = f 447 = f 448 = 2,

f 567 = 4i.

(A.2)

The non-vanishing components of g are

g12 = g34 = i

2
, g21 = g43 = − i

2
, g55 = g66 = g77 = −1

2
g88 = 1

2
. (A.3)

Up to permutations of the indices, the only non-vanishing symmetric invariant tensor
components are

d127 = d136 = d145 = d246 = −2i, d235 = d347 = 2i,

d128 = d348 = −6i, d558 = d668 = d788 = 4,

d888 = −12.

(A.4)
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